A locus in Drosophila sechellia affecting tolerance of a host plant toxin.
نویسندگان
چکیده
Many insects feed on only one or a few types of host. These host specialists often evolve a preference for chemical cues emanating from their host and develop mechanisms for circumventing their host's defenses. Adaptations like these are central to evolutionary biology, yet our understanding of their genetics remains incomplete. Drosophila sechellia, an emerging model for the genetics of host specialization, is an island endemic that has adapted to chemical toxins present in the fruit of its host plant, Morinda citrifolia. Its sibling species, D. simulans, and many other Drosophila species do not tolerate these toxins and avoid the fruit. Earlier work found a region with a strong effect on tolerance to the major toxin, octanoic acid, on chromosome arm 3R. Using a novel assay, we narrowed this region to a small span near the centromere containing 18 genes, including three odorant binding proteins. It has been hypothesized that the evolution of host specialization is facilitated by genetic linkage between alleles contributing to host preference and alleles contributing to host usage, such as tolerance to secondary compounds. We tested this hypothesis by measuring the effect of this tolerance locus on host preference behavior. Our data were inconsistent with the linkage hypothesis, as flies bearing this tolerance region showed no increase in preference for media containing M. citrifolia toxins, which D. sechellia prefers. Thus, in contrast to some models for host preference, preference and tolerance are not tightly linked at this locus nor is increased tolerance per se sufficient to change preference. Our data are consistent with the previously proposed model that the evolution of D. sechellia as a M. citrifolia specialist occurred through a stepwise loss of aversion and gain of tolerance to M. citrifolia's toxins.
منابع مشابه
The Genetics of Resistance to Morinda Fruit Toxin During the Postembryonic Stages in Drosophila sechellia
Although a great deal has been learned regarding the genetic changes that give rise to adaptation in bacteria and yeast, an understanding of how new complex traits arise in multicellular organisms is far less complete. Many phytophagous insect species are ecological specialists that have adapted to utilize a single host plant. Drosophila sechellia is a specialist that utilizes the ripe fruit of...
متن کاملThe genetic basis of Drosophila sechellia's resistance to a host plant toxin.
Unlike its close relatives, Drosophila sechellia is resistant to the toxic effects of the fruit of its host plant, Morinda citrifolia. Using 15 genetic markers, I analyze the genetic basis of D. sechellia's resistance to this fruit's primary toxin, octanoic acid. D. sechellia's resistance is dominant in F1 hybrids between it and its sister species D. simulans. All chromosomes, except the Y and ...
متن کاملRecurrent specialization on a toxic fruit in an island Drosophila population.
Recurrent specialization on similar host plants offers a unique opportunity to unravel the evolutionary and genetic mechanisms underlying dietary shifts. Recent studies have focused on ecological races belonging to the same species, but it is hard in many cases to untangle the role of adaptive introgression versus distinct mutations in facilitating recurrent evolution. We discovered on the isla...
متن کاملOdorant-Binding Proteins OBP57d and OBP57e Affect Taste Perception and Host-Plant Preference in Drosophila sechellia
Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, where...
متن کاملCan a Taste for Poison Drive Speciation?
0955 The endless struggle for survival in nature inevitably boils down to fi nding food and eluding predators. To avoid the latter, many plants produce chemical weapons to discourage predators. A sound strategy overall, but the rules of coevolutionary war suggest that an herbivore will evolve resistance to the toxic defenses of plants. The fruit fl y Drosophila sechellia , for example, has a pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 195 3 شماره
صفحات -
تاریخ انتشار 2013